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Random Walk in Dynamically Disordered Chains:
Poisson White Noise Disorder
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Exact solutions are given for a variety of models of random walks in a chain
with time-dependent disorder. Dynamic disorder is modeled by white Poisson
noise. Models with site-independent (global) and site-dependent (local) disorder
are considered. Results are described in terms of an affective random walk in a
nondisordered medium. In the cases of global disorder the effective random
walk contains multistep transitions, so that the continuous limit is not a diffu-
sion process. In the cases of local disorder the effective process is equivalent to
usual random walk in the absence of disorder but with slower diffusion.
Difficulties associated with the continuous-limit representation of random walk
in a disordered chain are discussed. In particular, we consider explicit cases in
which taking the continuous limit and averaging over disorder sources do not
commute.

KEY WORDS: Random Walk; Master Equation; Poisson Noise; Disordered
Systems; Diffusion.

1. INTRODUCTION

A standard model to study transport properties in the general context of
disordered systems is random walk in a disordered lattice.* In this
framework, several models have been studied in which the transition
probability per unit time to jump from one site to a neighboring one is a
time-independent random variable. We refer to these models as static
disorder models. More recently the problem has been posed of random
walk in media with dynamic disorder.®® In these problems the transition
probability per unit time which appears in the master equation (ME)
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describing ordinary random walk is replaced by a time-dependent random
process. Random walk in dynamically disordered systems is of relevance
for diffusion in microemulsion globules® and ionic conduction in
polymeric solid electrolytes, among other systems.’

Not many exact results seem to exist for the problem of random walk
in systems with dynamic disorder. An early failed attempt in this direction
appears in ref. 7, where the problem is addressed considering Gaussian
noise disorder and taking a continuous limit of the random walk ME. We
come back here to these problems, our aim in this paper being to explore
a variety of models with dynamic disorder for which explicit exact results
are given. In our models, dynamic disorder is introduced by transition
probabilities which fluctuate as Poisson white noise. The use of white noise
partly destroys correlations among different spatial points. This simplifica-
tion permits an explicit discussion of several aspects which also appear in
models with nonwhite noise. Our results should offer a useful guideline in
these more complicated cases. The use of Poisson noise permits us to main-
tain the positivity of the transition probabilities so that well-defined
stochastic models appear at each step of the calculation. The key idea of
our development, which is also applicable to other situations with non-
white dynamic disorder,® is the exact derivation of effective master equa-
tions (EME): Starting from an ordinary ME describing random walk in an
ordered medium, the introduction of stochastic transition probabilities
defines a stochastic master equation (SME). The average of the SME over
the noise sources modeling dynamic disorder leads to an EME. The EME
defines a generalized random walk in an effective nondisordered medium.
In our models this generalized random walk is still a Markov process
defined by an ME with effective transition rates. In addition, the con-
tinuous limit of the EME is always well defined, while other methods to
obtain continuous representations of the problem are cumbersome, often
lead to mistakes, and in the best situation require careful interpretation of
ill-defined quantities.

Two different classes of models are introduced in Section 2. In a first
class (global disorder) the noise sources are site independent. In the second
class (local disorder) the noise sources are site dependent. This second class
contains the dynamic generalization of the random barrier (RB) and
random trap (RT) models.'*» First, in Section 2 we recall basic facts about
random walk in an ordered chain. In particular, we give an interpretation
in terms of sample paths of the nondiffusive quasicontinuous approxima-
tion recently introduced by Doering ef al.®’ Section 3 includes our central
results. We find that starting with an ME which only includes nearest-
neighbor transition rates, the EME description contains multistep trans-
itions per unit time in the case of global disorder, but only modified
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nearest-neighbor transitions in the case of local disorder. In the case of
global disorder we find faster diffusion or no modification of the diffusion
constant, depending on the symmetry properties of the model. When the
disorder is of local nature it always leads to a slower diffusion. Our for-
mulation leads to diffusion equations for the continuous limit of the models
with local disorder that we consider. However, the continuous limits of the
models with global disorder are not diffusion equations, so that the under-
lying sample paths are not continuous, but contain jump processes. In a
sense, white dynamic disorder seems to have more important consequences
for global than local disorder. All these results are interpreted in terms of
sample paths. Finally, we show in Section 4 that taking a continuous limit
representation does not generally commute with the averaging over noise
associated with disorder. We make clear the convenience of taking the
average that leads to an EME before a continuous limit is considered.

2. RANDOM WALK MODELS

2.1. Nondisordered Chain

Ordinary random walk in a chain is defined by the ME for the
probability P{N, 1) of finding the random walker at site N at time £

0,P(N, t)=u(E* +E~ —2) P(N. 1) (2.1)
where E* = ¢* %" are shifting operators:
E*f(N)=f(N+1) (2.2)

We are considering a symmetric random walk with jumps only between
nearest-neighbor sites at a rate p. The rate u fixes the time scale of
the process. Introducing a lattice spacing / and a variable x= N/, the
probability density P/(x, t)= (1/]) P(N = x/, t) obeys the equation

8,P!(x, t) = ple T 4 = 1/%x _2) Pl(x, 1) (2.3)

In the continuous limit g — o0, /=0, with u/?>=D, (2.3) becomes the
diffusion equation for a diffusion process x():

-

3, P(x, z):Di}P(x, ) (2.4)
ox

An interesting alternative representation of (2.3) is given by a stochastic
differential equation (SDE), driven by Poisson white noise sources, for the
stochastic process x(z). Poisson white noise is defined as a limit in which
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the duration of the pulses of a generalized Poisson process z(¢) (shot noise)
goes to zero."%'? The process z(z) is defined by

n(r)

2(1)=Y wh(t—1,) (2.5a)

1=1

where n(t) is a Poisson counting process with probability

. (A1)"

Pln()=n)=e "

(2.6)

The times ¢, are uniformly distributed in the interval (0, 7), and occur with
mean frequency 4. The function A(t—¢,;) is a pulse attached to the time ¢,
such that A(z—t;)=0 for ¢ <t,. The pulses are weighted by w;, which are
random independent variables with a probability distribution p(w) and
mean value @. Examples of realizations of generalized Poisson noise with
rectangular and exponential pulses are shown in ref 11. In the limit in
which the pulses A(r —t,) become delta functions, the process z(¢) becomes
a white Poisson noise. White Poisson noise #(¢) is then given by a sequence
of delta peaks at random times ¢, determined by a Poisson counting
process. Imposing a zero mean value, #(7) is defined as

n(t)

n(t)=Y w,6(1—1)—id (2.5b)

i=1
Using the definition (2.5b), Eq. (2.3) is equivalent to
H)=n"()—n"(1) (2.7)

where n*(f) are two independent white Poisson noises with the same
parameter 4 = u and same fixed pulse amplitude w, =/ The dot denotes the
time derivative. Equation (2.3) can be obtained from (2.7) defining
P(x, 1)=6(x —x(t)), where the bar denotes average over the noise, and
using an important formula for the average of n(¢) with a functional of

n(1),"?

n(t)glnl=

& {w"} 6" 9ln]
2.8
D T 28)

where {w"} are averages taken with p(w). One finds!'?

k
8,P(x, t _;[Z o }ak+ P {“’k} )k—2]P(x, o (29)
k=0 =0
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which reproduces (2.3) when p(w)=4d(w—1), A= u. The diffusion process
(2.4) for x(z) is obtained in the continuous limit of the representation (2.7)
noting that for u—co, /-0 with pl?=D, n*(t)—n"(t) becomes a
Gaussian white noise of zero mean value and correlation

It —n~ ()1 () =0~ (12)1> = 2D8(t, — 1) (2.10)

Also in connection with the representation (2.7) of a free random walk
it is possible to give an interpretation of the quasicontinuous approxima-
tion (QCA) to (2.1) recently introduced by Doering et al.*’ Indeed, if we
now take for the pulse amplitude an exponential distribution with mean
value /¢, p(w)= (1/\/2) exp(—co/\/g), we obtain from (2.9)

2

8
2,P(x,1)=D —=
P =D P

(x, 1) (2.11)

Doering et al. obtained (2.11) as an approximation to the Kramers—Moyal
expansion of (2.3) which contains derivatives to all orders and which
preserves positivity of P(x, t).> Equation (2.11) goes beyond the diffusion
limit, incorporating discrete lattice effects (/+0). In this sense it was intro-
duced as a correction to the diffusion equation (2.4). We have here
obtained (2.11) by allowing jumps with an exponential distribution of the
jump size in a discrete random walk. This derivation answers the question
raised® of the possible interpretation of the QCA (2.11) in terms of sample
paths: The QCA is equivalent to a Markovian random walk with exponen-
tially distributed jump size.

2.2. Models with Dynamic Disorder

As a first set of models for random walk in a dynamically disordered
system we consider situations in which the jump rate u becomes a
stochastic function of time which is independent of the lattice site. This
stochasticity of p might model random changes in the energy of the
random walker, for instance, through an applied external field."*’ When
the random part of u is site dependent (local disorder), one is rather
modeling random changes in the local potential of the medium in which
the particle is hopping. Within the case of global disorder and in order to
explore the consequences of symmetry properties, we consider two models.
In the global-symmetric model (GS), the jump rate x in (2.1) is substituted
by a random process. As a consequence, the transition probability per unit

> For a recent discussion of the positivity of solutions of truncated Kramers-Moyal expan-
sions see Risken and Vollmer."'®
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time is the same for jumps forward and backward. Replacing in (2.1) u by
u+aé(t), where £(¢) is a random process, the GS model is defined by

GS  4,P(N,1)=wE* +E~ —2) P(N, t)+ al(t(E~ + E~ —2) P(N, 1)
(2.12)

a in (2.12) is a scaling parameter. Equations like (2.12) will be termed
stochastic master equations (SME) in the sense that the transition
probabilities are themselves random functions of time.

A global asymmetric model (GA) can be constructed by introducing
two independent random processes ¢*(¢) for the jump rates forward and
backward. In this case the transition rate per unit time for jumps
N - N+1 is different than for jumps N — N — 1, although both rates are
independent of N. The SME defining this model is

GA  8,P(N,t)=uwE* +E~ —2) P(N, 1)+ «& ~(1)(E* — 1) P(N, 1)
+oalt()NE- —1)P(N, 1) (2.13)

Equations (2.12) and (2.13) define P(N, ¢) as a functional of the noise
E(t) or &+ (). For each realization of the noise these equations still have
the meaning of an ME provided that the stochastic transition rates
u+al(t) or u+al*(¢) remain positive. This requirement places severe
limitations on the possible choices of the noise. In particular, Gaussian
noise is not allowed, because it has unbounded positive and negative
realizations. Following past experience with a similar problem,"* we
choose here to model the random processes £(¢) and £*(¢) by Poisson
white noise as defined in (2.5b) with parameter A and mean value {®} = @.
We note that in (2.13) £7(¢) and & (¢) are taken as independent processes,
although with the same parameters 4 and @. A Poisson white noise is
bounded from below:

()= —Aa, EE() =2 —id (2.14)

so that the positivity requirement for the transition rates is satisfied
whenever p— aAd = 0. Fulfilling this condition and with our choice of £(¢)
and £7%(¢), (2.12)2.13) characterize well-defined stochastic processes
which model random walks in systems with global dynamic disorder.

We now introduce models with local disorder. We first consider the
generalization to the dynamic case of two well-known models of static dis-
order, namely the random trap (RT) and random barrier (RB) models.!"
Starting from a general one-step ME,

8,P(N,1)=W*+*(N—1,t) PIN—1, )+ W= (N+1,1) P((N+ 1, 1)
—[W*(N, 1)+ W (N, 1)] P(N, 1) (2.15)
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the symmetry properties of the two models are such that in the RT case
the tramsition rate from a site N is the same for transitions forward and
backward, while in the RB case the transition rate N - N+ 1 is the same
as for the transition N+1— N.

In order to model a system with local dynamic disorder, one associates
an independent Poisson white noise £,(f) with each site N. We take the
same parameter values A and @ for any &,(¢). For the generalization of the
RT model to dynamic disorder we take

W=(N, 1) =WT (N, 1) = p+ (1) (2.16)
so that the appropiate SME reads
RT O, P(N, 1)=w(E*Y+E~ =2)P(N, t)+(ET —E~ =2)aé{f) P(N, 1}

(2.17)

For the generalization of the RB model we take
W (N, t)y=W"(N—1,1)=u+al (1) (2.18)
Wo(N+L)=W"(N,)=p+aly, (1) (2.19)

and the appropriate SME reads

RB 0PN, t)=p(E"+E =2)P(N, 1)+ 2l n  (1)(ET = 1) P(N, 1)
+aé (O(E~ —1) P(N, 1) (2.20)
In the limit in which &,(¢) becomes site independent both models (2.17)

and (2.20) reproduce the GS model (2.12). A model with local disorder and
intrinsic asymmetry in the transition rates can be introduced by choosing

W=(N, t)=pu+alE (1) (2.21)
so that the associated SME is

3,P(N, t)=(E* + E~ —2) P(N, 1)+ (E* — 1) a5 (1) P(N, 1)
+(E~ —1)al (1) P(N, 1) (2.22)

For site-independent noise, (2.22) gives rise to the GA model (2.13).

The three SMEs just introduced for systems with local disorder define
well-behaved ME when the same condition (u — ald > 0) as for global dis-
order is satisfied. In the limit in which the random processes ¢ ,(f) become
time-independent random variables one recovers the well-known models of
static disorder. This would correspond to considering nonwhite noise & (1)
with a finite correlation time t and taking the limit 7 — co.
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3. EFFECTIVE MASTER EQUATIONS

In this section we derive EMEs for the models introduced above. The
basic idea is to consider that an SME defines P(N, ¢) as a functional of the
noise sources, so that, averaging over the realizations of the noise, one
arrives at a new ME, the EME, for the averaged probability distribution
P(N, t). The EME for P(N, t) defines a Markov process which includes the
effects of the disorder in the random walk properties. The fact that the
EME can be obtained exactly and that it defines a Markov process is a
consequence of the use of white noise, which greatly simplifies the problem.
Statistical properties are easily obtained from the EME.

3.1. Gobal Disorder

We indicate by (...) the average over the realizations of £(1). Let us
first consider the average of the GS model (2.12). The only difficulty
appears in the calculation of £(¢) P(N, t). This average can be done using
the general formula (2.8):

2 (o'} TP
& Ez nl &)t
()

n!

(1) P(N, 1)

Il

A

n

[W(E*+E —2)]"'P(N.7)  (3.1)

118

2

Substituting (3.1) in the average of (2.12), we arrive at the EME for the GS
model:

3PN, D)= [(u—Aad)E* + E~ —2)+ A{e*E +E =2 _ V] P(N, 1)
(3.2)

where {..} is the average over the distribution p(w) for the pulse
amplitudes. For fixed amplitudes p(w)=d(w — @), the average is directly
read from (3.2). For an exponential distribution p(w)= (1/®) exp(—w/d)
we find

+ - _ 92
atP(N»t)=|:,U(E++E—2)_{_,10(2(1—)2 (E"+E 2) :|

B+ E —2) | T D
(3.3)

The EME for this model can be easily solved by Fourier transformation:

P (t)=Y e VPN, 1) (3.4)



Poisson White Noise Disorder 1035

The solution with initial condition P(N, 0) =4y, is
B (t)=e " (3.5)
where

ep(g)=2(p — Aad)(1 —cos g) + A[ 1 —exp[ — 2ad(1 —cos g)]1] (3.6)

for fixed (F) amplitude of the noise pulses and

[2(cos g—1)]?
1 4+ 20@(1 —cos q)

ep(q) = 2u(1 — cos q) — doa’@? 3.7

for exponentially (E) distributed amplitudes. The statistical moments of
P(N, t) are obtained from the usual formula

(N7 =(=iy" 978, (D)] 4=

The notation {...» indicates the average over P(N, t) and {...) indicates
the average over P(N, t) obtained by averaging {...)» over the realizations
of £(2). Results for the second and fourth moments are given in Table L.
These results indicate that symmetric global white dynamic disorder does
not change the diffusional behavior of (N2, but it does change the short-
time behavior of (N*).

The EME for the GA model (2.13) is obtained following the same
method. From (2.8) we now have

- A . - —_
() P(N, 1) =——— {e* " "D —gpp(ET —1)— 1} P(N, 38
FOPN = (e ww(EF —1)-1}PIN,D) (38)

so that

0, P(N,t)y=[(u—Aa@)(ET + E~ —2)
+ A{e*@ET =1 1 @ E” =D _ 11 P(N, 1) (3.9)
The explicit form of the EME for exponentially distributed amplitudes
becomes
0,P(N, t)=pu(E* + E~ —2) P(N, 1) + Ao’@*

(L+a@)E2+ E7=2) =214+ 20)(EX + B~ =2) ———
" 1—ai(1+ad)E* +E~ —2) PN, 1)

(3.10)
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The solution of the EME can also be given by (3.5) with

er(g) =2(u — 0dd)(1 —cos q) — A[e*@ T~ 1) 4 pote =1 _ 27
ex(g)=2u(1 —cos q) + Aa*d> (3.11)
><2(1+oca_))(1—cos 2q) —4(1 + 2ad)(1 —cos q) (312)

14+ 20i(1 4+ aw )1 —cos ¢)

The associated first moments are also given in Table I. These results
indicate that the existence of normal diffusion (N2) o ¢ is not changed,
but contrary to what happens in the symmetrical model, the value of the
coefficient d= (N2)/(2t) is changed by the presence of disorder, giving
here a faster diffusion. The behavior of the fourth moment is changed both
for short and long times.

It is interesting to understand the EMEs (3.2) and (3.9) in terms of
effective transition probabilities. A remarkable fact is that (3.2) and (3.9)
imply the existence of nonvanishing probabilities for transitions N - N +n
with arbitrary step n In order to identify such effective transition
probabilities per unit time W(N — N + n), one has to expand the exponen-
tials involving the shifting operators E* and rearrange the resulting series.
For the GA model, (3.9) can be rewritten as

d,P(N,1)= [2/1 {e ™} —1+od)—2u+(ET+E ) (u— Ao+ Aa{we **})

< —n /:' n, N, — 0w DIAT £\
+n§2 (ET"+E )E{awe }}P(N, 1) (3.13)
so that
W(N-> N+ 1)=u— Ao + Ao{we *} (3.14)
_ Aa”
WN->N+tn)= . {w"e >}, n>1 (3.15)

Likewise, for the GS model (3.2), it is found that

(o)™

WN 1) =3, (4~ iad) + ja" {w o 2 L (nt )]

} (3.16)

The existence of these multistep transitions can be understood in terms
of the representation (2.7) of normal random walk. In the absence of dis-
order the random walker jumps forward or backward following the delta
pulses of a given realization of n* (). The mean time between pulses u~*
fixes the transition probability per unit time for moving one step of size

822/55/5-6-12
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n=1. Jumps of size n> 1 have zero probability. In this picture, our models
of dynamic disorder correspond to the assumption of a stochastic mean
time between pulses. The substitution of u by u+ aé* (1) implies that the
stochastic mean time between pulses [u+ aé* ()]~ " vanishes at times at
which £*(¢) has a delta pulse. This occurs, on the average, at time intervals
A~'. When the mean time between pulses of #*(f) vanishes there is an
accumulation of pulses, which gives rise to effective transition rates of
arbitrary size n> 1. This idea of the dynamic process permits us to give a
physical argument to obtain directly (3.14)-(3.15):

W(N—»N-i—n):}imoﬁ(—]—v—(?;n)

(3.17)

where P{N(6}=n) is the probability that #*(z) has n pulses in the time
interval & for a given realization of &% (7). Given the Poissonian character
of n* (1),

P(N(5)=n) = exp {—j'” dSEu+a6+(S)]}

X%Dt”ds [;H—oci*(s)]}n (3.18)
ni 1]

Since in (3.17) we only need P(N(d)=n) to first order in 9, and, in this
order, the probability of a delta pulse of £*(s) in the interval d is 4, we
can calculate (3.17) for n>1 by replacing in (3.18) &% (s) by
w,;0(s —1;)— A (with ¢ <t;<r+0) and multiplying the resulting expres-
sion by Ad. This reproduces (3.15). To obtain (3.14), one needs to add the
probability P(N(6)=1) when there is no pulse of &

The above argument to obtain (3.14)—(3.15) makes implicit use of the
global character of the disorder and of the independence of ¢* and £~
This is seen in the dynamic path considered in (3.17)-(3.18). This path
consists in # jumps forward through the n sites between N and N+ n. The
global character is taken into account because the same noise ¢*(s) is
attached to each site, so that the probability of having a delta pulse of
£7*(s) in the interval ¢ in each intermediate site is given by the same factor
A6. The independence of & " (s) and £ (s) is used because paths of n+r
jumps forward and r jumps backward due to pulses of £ (s) and £~ (s) are
not considered in (3.17). For these paths a delta pulse of both é*(s) and
&7 (s) needs to occur. The probability of having any of these pulses in d is
18, so that the probability of both pulses is of order 6 and it does not con-
tribute in (3.17). The physical difference between the GS and GA models
becomes quite clear at this point. In the GS model, & (s)=¢&(s)=&(s)
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and paths from N to N+ n including jumps backward contribute in (3.17).
The total number of jumps n+ 2r is a Poissonian variable of average 2ad.
Taking into account the number of differents paths, given by ("%%), we
obtain (3.16). Basically, the GS model corresponds to a random walk in a
stochastic time (the time scale u becomes stochastic), while in the GA
model we have two independent stochastic time scales for jumps forward
and backward. As a comsequence, for each realization of &(s), the GS
model respects the symmetry between jumps forward and backward of the
random walk in the nondisordered case. Then the stochastic diffusion coef-
ficient 1/2 d{N?*>/dt is given by [u+ a&(t)], whose average is just y, so
that no modification occurs in the diffusion coefficient. On the other hand,
in the GA model and for a realization of £*(s) and £~ (s), a net drift
appears. The average over realizations restores the symmetry in the effec-
tive process, but the underlying asymmetry speeds up the diffusion process.
This explains the change found in the diffusion coefficient for the GA
model.

3.2. Local Disorder

The EME for the dynamic RT model is obtained by taking the
average of (2.17). To do this, it is important to recall the independence of
& (1) at different sites N. Noting that

(ET+ E~ —2)aly(r) P(N, 1)

= a(ly, (D) ETPN, 1)+ &y _ (1) ETP(N, 1) = 28(1) P(N, 1))

and making again use of (2.8), we have

"1 — A
O a1 PN D)= — 2= (e 1 4 2000}
5 n! 2x

W) PN, 1) =4

I8

n

(3.19)

so that

0,P(N, t)= (u—% {e=—1 +2acu}) [E¥*+E-—=2]P(N,t) (3.20)

which for exponentially distributed pulses becomes

20%6?

1+ 20w

3, P(W, z)=<u— )[E+ +E- 21PN, 1) (3.21)
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The EMEs (3.20) and (3.21) are one-step MEs. Therefore they have the
same mathematical properties as the original ME, (2.1), for ordinary

random walk except for the modification of the jump rate u. In particular,
the solution of (3.20)-(3.21) is

P(N, 1) =™ 2] \(2pent) (3.22)

where I, is a modified Bessel function and the effective jump rate pq is, for
fixed and exponentially distributed pulses, respectively,

A _
pr=p =5 1 +.20) (323)
225%0?
E —_— pa—
Her = 20 (3.24)

The explicit forms of the second and fourth moments are given in Table L.
Our result indicates that in the dynamic RT model the introduction of
disorder only amounts to a change in the time scale of evolution. Since
U> g, the process slows down. Note that the positivity of u.; is guaran-
teed by the requirement u>Aa@d and that the diffusion is slower for
exponentially distributed pulses (uf;> u%).

The main obvious difference between (3.20)-(3.21) and our results for
global disorder is that we do not find now allowed transitions with jumps
beyond the nearest neighbor sites. The reason for that can be understood
by recalling the argument following (3.17): The accumulation of pulses per
unit time was possible for global disorder because the same noise acts at
each site during the path N > N+n We now have uncorrelated noise
sources at each site acting locally and no accumulation of pulses can occur,
by the same argument as the one given to see that paths involving jumps
forward and backward could not contribute to W(N — N +n) in the GA
model: a path involving n pulses does not contribute in a probability per
unit time. This argument is quite general for any model including local dis-
order given by independent noise sources at each site. In fact, we find
below that for all the models with local disorder introduced in Section 2,
the associated EME only includes one-step jumps.

The EME for the dynamic RB model (2.20) is obtained in a similar
way. We first rewrite (2.20) as

8,P(N, 1)=p[E* + E~ —2] P(N, t)+ a[E* — 1] &x(t) PN, 1)
Fa[E™ —11&y. (1) P(N, 1) (3.25)
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The averages &y(2) P(N, 1) and &, ,(¢) P(N, 1) are calculated using (2.8).
The functional derivatives involved are

5"P(N’[)_ o .

ey () el =L (3.26)
and

w_. _ n—1 +

56N+1(z)"_( 2a)"" o[ ET — 1] P(N, 1) (3.27)
so that

En(t) P(N, 1) =

(‘cxza)z {g«zaw_ 1+ 20w }[E- —1]P(N, 1) (3.28)

EN+1(I) P(N, t)=

(_aja)z {e7 — 1420w} [E* —1]P(N, 1) (3.29)

Whit (3.28) and (3.29) substituted in (3.25), the EME turns out to be
identical with (3.20) found for the RT model, as is the case for static
disorder."¥

We finally consider the EME for the model (2.22) with local asym-
metric dynamic disorder. The average of (2.22) is more casily taken by
rewriting it as

0PN, t)=pulET+E~ =2]P(N,t)+al;, (1) PIN+1,1)

+aly (()PIN=Lt)—aléx()+E5 ()] P(N, 1) (3.30)

The functional derivatives involved in calculating é_,\,i(t)f_—m_) from (2.8)
are easily evaluated from (3.30). We obtain

Ex(t) P(N, 1) = aﬁi{e*“w—Hm}P(N,z) (3.31)

Substituting (3.31) in the average of (2.22), we arrive at

0,P(N,t)=(u—A{e *—14+aw})[E* +E~ —2]1P(N, 1) (3.32)

This is again a one-step ME very similar to (3.20). The effective jump rate
Hegr 1S NOW

uE = p—A(e=" — 1 + o) (3.33)

Aot@?

14+ aw

U= p— (3.34)
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Therefore we find an overall behavior very similar to the RB and RT
models but with a larger jump rate p.q. Explicit results for the moments are
given in Table I.

A general conclusion is that for models with local disorder we find a
slower diffusion. This happens because the effect of disorder is to increase
the average time spent by the random walker at a given site. This can be
seen by considering the probability of having no jumps from a site N in a
time interval 8. For example, for the RT model this probability is given by

t+ 6
exp [—2 | ds(u+aéN<s))]

3.3. Continuous Limit

The EME:s derived in Section 3.2 give a complete well-defined descrip-
tion of the different models introduced for random walk in dynamically dis-
ordered chains. In many cases a simpler continuous limit description would
be desirable in the same way that the diffusion process (2.4) accounts for
the main features of the discrete random walk defined by (2.1). The EMEs
are a particularly useful starting point for obtaining meaningful continuous
limits for models of random walk in disordered media. Our strategy is to
consider the noise sources to be given and independent of the random walk
dynamics. Therefore we keep the parameters @ and 4 fixed when taking the
continuous limit. The parameter p is scaled in the same way as for random
walk in a nondisordered chain, u/*= D. The scaling with / of the coupling
parameter « is determined by requiring that a finite effect of the disorder
is found in the continuous limit. The continuous limit is taken as we did
in (2.3), defining

P, )= lim (1/1) POV=2xI, 1)

For the GS model, Egs. (3.2) and (3.3), we take «/? = A. Introducing
the notation W= A, it is straightforward to obtain from (3.2) for the case
of fixed amplitude of the pulses

2, P(x, 1) = (D — AW) 02 P(x, 1) + Alexp(Wé2) — 11 P(x, 1)  (3.35)

For exponentially distributed pulses we obtain from (3.3)

—_ e wo:
8,P(x, )= (D — iAW) 0 P(x, z)+;,r-l%zp(x, ) (3.36)
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Equations (3.35) and (3.36) are not diffusion equations. They describe, at
a continuous level, the modification of the diffusion process (2.4) due to
dynamic disorder. Both equations contain even derivatives with respect to
x to all orders. This implies the existence of noncontinuous sample paths.
The positivity of the solutions of (3.35) and (3.36) is guaranteed by the
condition imposed on the transition rates of the SME, which for the
parameters appearing in the continuous limit becomes D= AW. In fact,
(3.36) has the same formal structure as the QCA (2.11}) for which positivity
of the solution has been explicitly proved.®’ One can also check that no
divergent modes appear when (3.35) and (3.36) are Fourier transformed.

For the GA model (3.9)-(3.10) a different scaling of « is necessary.
We now take a/=A4 and W= 4®, obtaining from (3.9) for fixed pulse
amplitude

0,P(x,1)=D 02 P(x, t) + e + e~ " —2) P(x, 1) (3.37)
and from (3.10) for exponentially distributed pulses

2

1— W22

8,P(x, 1) =D 0> P(x, 1) + 2. W? IZEA0) (3.38)

The scaling /> = A4 used in the GS model gives here divergent coefficients
in the equation for P(x, ¢). The difficulty is similar to the well-known one
found when taking the continuous limit of a random walk in a nondisor-
dered chain with unequal rates for jumps forward and backward.'>’ We
have already noticed that for each realization of &*(¢), £~ (¢) we have in
the GA model a nonvanishing drift. This is the reason behind the need of
using a scaling a/= A. The general comments made for (3.35) and (3.36)
apply also to (3.37)-(3.38).

The difference found from the EMEs between the diffusion coefficient
for the GS and GA models remains in the continuous limit. However, the
basic difference between the two models in the continuous limit is seen
upon comparing (3.35) with (3.37). Equation (3.37) implies the existence of
jumps of the random walker of fixed amplitude W, while in (3.35) the
jumps have no fixed amplitude. The reason behind this difference is that,
as explained before, for the GA model only forward jumps contribute to
W(N— N+n) in (3.15). The number of jumps which contribute to W
is a Poissonian variable with average a®. In the continuous limit,
W(N — N+n)—> 18(x/I—a®). In the GS model, paths from N to N+n
contain jumps forward and backward. The number of jumps is also a
Poissonian variable of average 2u@, but now the sign of individual jumps
is random and independent from one jump to another. In the continuous
limit the number of jumps is concentrated at its average value 2ad = 2W/I2
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Applying the central limit theorem, one finds that the displacement tends
to a Gaussian distribution of zero average and variance 2W. We will see
below that in this way we recover the second term of (3.35), which
corresponds to pulses of the noise.

For our three models with local disorder, the scaling a/? = 4 is used.
The same continuous limit equation is found for the RT and RB
[Eq. (3.20)] and local asymmetric [Eq. (3.32)] models (W= A®):

8,P(x, )= (D — iAW) 82 P(x, 1) (3.39)

Equation (3.39) is the same for fixed or exponentially distributed pulses.
This result indicates that the three models coincide in the continuous limit
with a diffusion process with effective diffusion coefficient D= D — AW =
lim, , o /*uy. Diffusion becomes smaller due to disorder effects. Differences
found in the discrete case are washed out in the continuous limit because
only the systematic part of the noise (—xA@) survives in this limit. In the
continuous limit the contribution of the pulses of noise could only have an
effect if its rate 4 would scale as /%, while we are considering here 1 as a
constant in this limit. The continuous limit of the moments in Table I is
easily obtained and can be also directly calculated from (3.35)-(3.39).

An interesting question is the representation in terms of sample paths
of the processes found in the continuous limit. This question is answered by
finding the SDE for the processes x(7) equivalent to (3.35)—(3.39). For the
models with local disorder this is an easy task, since (3.39) is equivalent to
the usual Langevin equation for Brownian motion.

x(2)=yx(r) (3.40)
where ¥(t) is a Gaussian white noise of zero mean and correlation
() y (1)) =2(D—AW) ot —1") (3.41)

We now consider the equations for the paths x(¢) for the models with
global disorder. Equations (3.35)—(3.38) imply that x(z) is not a diffusion
process. The second term in the right-hand side of these equations is
associated with jump processes. Quite generally, the Langevin-like equa-
tions for x(¢) should then contain a noise term associated with diffusion
and other noise terms giving rise to the jump contributions. The explicit
equation can be obtained by inspection of (3.35)-(3.38) and comparison
with previous results. The GA (3.37)-(3.38) is easier to discuss: The com-
parison of (3.37) with (2.3) permits us to interpret (3.37) as a superposition
of normal diffusion with coefficient D and random walk with jump rate A
in a lattice with spacing W. Likewise, the comparison of (3.38) with (2.11)
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identifies (3.38) as a superposition of normal diffusion with coefficient D
and random walk with jump rate 4 and jump amplitude exponentially
distributed with mean value W. In summary, the appropriate SDE for x(r)
1s

X()=y(t)+n(t)—n—(1) (3.42)

where y(7) and #*(z) are independent stochastic processes. Now, y(¢) is a
Gaussian noise of zero mean and correlation {y(z) ¢(¢')> =2Dd(¢t—1'), and
n* (1) are independent white Poisson noise (2.5b) with the same parameter
2. To obtain (3.37), n*(¢) have pulses of fixed amplitude W, and to obtain
(3.38), they have pulses with exponentially distributed amplitude of mean
value W.

Equation (3.36) for the GS model is similar to (3.38) and for the same
reason the stochastic equation for the paths x{r} is also (3.42), but with
different parameters of the noise sources y(f) and #*(z). The parameter D
is now replaced by D — AW, n*(¢t) have parameter A/2 instead of 4, and W
is replaced by W'

The equation for x(r) equivalent to (3.35) comes out to be

X(t)= (1Y +n(r) (3.43)

where y(t) is again Gaussian white noise with correlation {x(z) x(¢#')> =
2(D—~ AW)6(t—t') and y(¢) is a Poisson white noise (2.5b) with parameter
A and pulses of amplitude given by a Gaussian distribution:

plw) = (4nW) "2 exp(—w?/4W) (3.44)

The origin of these pulses with Gaussianly distributed amplitude was dis-
cussed above. To prove the equivalence of (3.43) and (3.35), one defines
P(x, 1)=6(x — x(1)) and averages the equation for 8(x — x(¢)):

0,0(x —x(1))= —0.x(1) d(x — x(2)) = 0. n(1) 6(x — x(2)) ~ (3.45)

The Gaussian average over x(¢) gives the diffusion term in (3.35). The
average over #(f) is taken using (2.8) and it reproduces the second term in
the rhs of (3.35).

The result for GS with exponentialy distributed pulses is recovered by
replacing the Gaussian (3.44) by the exponential resulting from averaging
(3.44}) with an exponential distribution for the pulse amplitude W.

4. CONTINUOUS LIMIT OF STOCHASTIC MASTER
EQUATIONS

In this section we wish to address the following question: We have
mtroduced models defined by SMEs whose average over stochastic
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disorder gives rise to EMEs. The continuous limits of the EMEs have been
discussed. If one is only interested in the continuous limit, it might seem
simpler to take the continuous limit of the SME and later make the
average. If the continuous limit and stochastic averaging commute, the two
procedures should give identical results. We will show that this not always
the case and one might find that the continuous limit of the SMEs does not
properly exist when the same continuous limit of the EMEs is well defined.
Even when the two procedures commute, the continuous limit of the SME
is often plagued with ill-defined quantities and great care is needed to
obtain the correct result. Our conclusion and message is therefore that it is
always safer and simpler to take the path through the EME in which no
difficulties appear and everything is well defined at each stage of the
calculation.

As a separate matter it is interesting to note that if the continuous
limit of the random walk ME is taken before introducing sources of disor-
der, there is no natural way of defining some of the models considered here.
For example, it is not simple to implement the idea behind the GA model
if the starting point is the diffusion equation (2.4). In general, there are
several models of random walk in a disordered chain which give different
results in the continuous limit but which are difficult to introduce in the
continuous limit of random walk in an ordered chain.

4.1. Global Disorder

For global disorder, noise sources are site independent and no
difficulties are expected when taking the continuous limit of the SME. We
give here the results for completeness. The continuous limit is defined as in
Section 3.3 and the same scaling of parameters is used. For the GS model,
al*= A, and the continuous limit of the SME (2.12) becomes

0,P(x,t)=[D+ A&(2)] 02 P(x, t) (4.1)
Likewise, for the GA model with a/= A4 we obtain from (2.13)

0,P(x, 1) ={D02+ A[E (1) — &1 (1)1} 0.] P(x, 1) (4.2)

At this level of description the differences between the GS and GA models
are clear. Equation (4.1) describes a pure diffusion process in which the dif-
fusion coefficient is a positive-definite, time-dependent stochastic quantity.
The stochastic part averages to zero and it does not modify the coefficient
d= (N?>/(2t). On the other hand, (4.2) includes a stochastic drift due to
the independence of £7(r) and &*(r). This stochastic drift was already
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mentioned before. It averages to zero, but it contributes to the coefficient
d, giving rise to faster diffusion.

The continuous limit (3.35)-(3.38) of the EMEs can be obtained from
(4.1) and (4.2) by alternative methods. One is showing the equivalences of
(4.1) and (4.2) with (3.43) and (3.42) respectively. More directly, the
average of (4.1) and (4.2) can be taken using once more the general
formula (2.8). In (4.1) we obtain

1) O2P(x, )=l 82 Y (@A %) P(x. 1) 4.3)
k=1
while for (4.2) we have
E1) 0. P(x, )= Fid d, Y (040,) P(x, 1) (4.4)
k=1

Equations (4.3) and (4.4) are for noise with exponentially distributed
amplitude of the puises. Introducing them in the average of (4.1) and (4.2),
we recover (3.36) and (3.38). A similar derivation can be given for noise
with fixed amplitude.

4.2. Local Disorder

We first consider the RT and RB models, and the more delicate local
model with intrinsic asymmetry is discussed later. To find the continuous
limit of the SME (2.17) associated with the RT model, we rewrite (2.17) as

0, Pl(x, )= (e +e =) [ u+af(x, )] Px, 1) (4.5)

where we use the same notation as in (2.3). Taking the limit / — 0 with the
scaling A = al? we obtain

3,P(x, 1)=02[D + A&(x, )] P(x, t) (4.6)

Likewise for the SME (2.20) associated with the RB model we have

0, P'(x, t) = p(e" + e~ —2) Pl(x, 1)
— (e —1) & (x, t)e " —1) Pl(x, 1) (4.7)

which in the limit /- 0 with A = «/? reduces to

3,P(x, 1) =D >P(x, 1)+ A 0 &(x, t) 0, P(x, 1) (4.8)
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It is important to note here the different position of &(x, ¢) relative to the
operation ¢, in (4.6) and (4.8). For static disorder (4.6) and (4.8) concide
with the continuous limits used in ref 16. Other continuous limits have
been proposed in the literature.* The formal derivation of (4.6) and (4.8)
can be justified by taking the limit / - 0 in a weak sense, that is, consider-
ing only averaged quantities. However, the real problem is not with the
form of (4.6), (4.8), but rather with the meaning to be given to
E(x, t)y=1lim,_ , ' (x, t). In fact, to give sense to averages which involve
&(x, 1), one is forced to go back to the original discrete version, so that
equations like (4.6) or (4.8) are of little operational significance. To begin
with, we need a precise definition of /(x, t) for a continuous variable x. We
take &/(x, t) to coincide with &,(f) when N — /2 <x < N+ 1/2:

Elx, )=y H(x — NI) & (1) (4.9)
H(x—Nl)zH(x—Nl-l—é)—H(x—N—é) (4.10)

where 0(x) is the Heaviside step function. Similarly, and being precise in
the definition used in (2.3),

Pl(x, I)E%Z H(x— NI) P(N, 1) (4.11)

The statistical properties of the stochastic process £(x, ¢) are determined by
the set of its cumulants. Given that for independent Poisson white noise
K& (ty) Emlta) - En (62D
= 2"} 8ty —15) 01, —t3) - 0(t; — 1,) On jOnywvs " Oy, (4.12)
we have
L xy, 1) & xn 1))
= i{w"} (1, —ty)---0(t, — t,) H(x, —x;)--- H(x, —x,) (4.13)
so that
LElxy, 1) - &(xp, 1) D
= 2{w"}o(1,—13) - 0(t; —1,) Oy Oy, (4.14)

* For example, in ref. 7 and using the scaling 4 = a/ the proposed equation for the RB model
is

3, P(x, )= D 0L P(x, 1)+ ALE(x ", 1) — &(x, 1)] 0. P(x, 1)
Averages calculated with such an equation give results with no effect of the disorder. This

is not immediate to see when dealing with &(x, ), but it is obvious if one takes the con-
tinuous limit of the EME (3.20) with the same scaling 4 = a/, which gives pure diffusion.
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where 0, . is a Kronecker delta. The difficulties which appear in deriving
a continuous limit without taking first the average of the SME are due to
the handling of these Kronecker deltas for a continuous variable x.
To make such difficulties clear, let us attempt the evaluation of
E(x, 1) P(x, 1) in (4.6). To do this, we need the generalization of (2.8):
o f N
Ex, ) P(x, 1)=4 Y lc;)! ) del ceedx, o dtyc--dt,

X <<§(x: t) é(xh tl) . .5(xn717 ln—1)>>
y 8" 'P(x, 1)
56()‘:15 tl) "'55(3(",1, tnfl)
When substituting (4.14) in (4.15), one immediately finds quantities

requiring a careful interpretation.” A way to avoid these problems which
permits us to obtain the correct average of (4.6) is to define

(4.15)

E(x, 1) P(x, 1) =}i_{r(1) Elx, 1) Pl(x, 1) (4.16)

The rhs of (4.16) is evaluated using (4.15) for & and P’ and taking into
account (4.13):

&'x, 1) Pl(x, 1)
0 fon) x4+ 12 X412 n=1
\ {@"} px+t +i 3" LP(x, 1)
dx. - d
* g n! J‘.\'—1/2 . J‘)c—l/2 xniléi(xl’t)"'éé(xnfbt)
(4.17)

The functional derivatives in (4.17) are evaluated, for the RT model,
from (4.5):

OP(x, 1) o
W—a(é(x-l—l—x JPU(x+11)

+0(x—1—x)P (x—1L1)—=26(x—x") Pl(x, 1) (4.18)

* For example, one has, for n=2,
f dx, 6, ., A0Ld(x—x)P(x, 1)

The correct interpretation of this expression is found to be

lim(—24/1%) P(x, 1)

=0
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so that if x" e (x—1/2, x+1/2),

OP(x, 1) .
1) —2u6(x —x") P'(x, 1) (4.19)

and

EZ(x, 1) Pi(x, t)

=2y 2 gy

!
, n!

A __ S
= <_ oo le =1} —/1@) Plx, ) — = — > P(x, 1) (4.20)

An important point to note in (4.20) is that the finite result in the
limit /— 0 is the sum of an alternating series in which any individual
term diverges. The continuous-limit equation (3.39) for the RT model is
reobtained by taking the average of (4.6) with (4.16) and (4.20). The same
result (3.39) for the RB model is obtained from (4.8) using (4.16)—(4.17)
and calculating the functional derivatives from (4.7).

The path followed here to obtain the continuous limit for the prob-
ability distribution averaged over the sources of disorder is even more
subtle for the local model with intrinsic asymmetry (2.22). The SME (2.22)
can be rewritten as

8,Pix, 1) = (e +e " —2) Pl(x, 1)
+al (=D& (x, )+ (e = 1) & x, )] Pl(x, 1) (4.21)

Introducing the same scaling «/>= A that was needed to obtain the
continuous limit of the EME (3.32), we have

0,P(x,1)=Dd>P(x, t)+ A0 [E(x, 1) — EF(x, 1)] P(x, 1)
+142[E(x, )+ ET(x, )] P(x, 1) (4.22)

where A =1lim, , ,(4/]). This indicates that, properly speaking, the limit
under consideration does not exist, because the stochastic drift term in
(4.22) diverges. However, the equation (3.39) for P(x, t) in the continuous
limit can be obtained by taking the average of (4.22). The reason is that,
following the same procedure as above, it is found that

ET(x, 1) P(x, 1) =EF (x, 1) P{x, t)= —AdP(x, 1) (4.23)
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This means that when taking the average of (4.22) there is a cancellation
of two divergent terms. In summary, for the model (2.22) the average over
the noise realizations and the continuous limit are operations that do not
commute in the sense that (4.22) contains divergent quantities. This exam-
ple makes clear the advantages of the method followed in Section 3, that is,
first make the average and then take the continuous limit.

The main question addressed in this section is the correct interpreta-
tion of &(x, t) and its statistical properties. One is tempted to think that
correlations like {&(x, t) &(x’, t'))> have to be proportional to d(x —x’).
Even if this were so, stochastic partial differential equations like (4.6), {4.8),
or {4.22) require some prescription to be interpreted, which is usually given
in terms of a lattice system."'” In our case, the analysis of the discrete
model leads to correlations proportional to ¢, ... We recall, however, that
we have defined the continuous limit of our models keeping the noise
parameters @ and A fixed. If we introduce a scaling A =4/ "', Q = wl, (4.14)
becomes

<<6(X1, [1) "'é(xrw tn)>>
= A{Q"} 5(t; —15)---6(t, — 1) O(xy — x5) - 0(x; —x,) (4.24)

The average of equations like (4.6) and (4.8) with £(x, ¢) given by (4.24)
leads to the occurrence of many divergent quantities. In particular,
occurrence of 4(0) can be seen in ref. 7. With this scaling of the noise
parameters, 4=A4/"' and Q=wl/, and keeping the coupling constant «
fixed taking /— 0, the continuous limit of the EME is just the diffusion
equation (2.4), so that no effect of disorder remains in this limit. Since no
divergence is found in this last procedure, we see another example of the
noncommutation of the continuous limit and the averaging over disorder
sources. We finally note that if the limit /— 0 is taken, scaling the noise
parameters as A4 =2A["', Q =@/, but also the coupling parameter a = A/ >
as we have generally done, the EME for any of the models with local
disorder has a well-defined continuous limit:

8,P(x, )= (D — AAD) 8> P(x, 1) (4.25)
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