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Exact solutions are given for a variety of models of random walks in a chain 
with time-dependent disorder. Dynamic  disorder is modeled by white Poisson 
noise. Models with site-independent (global) and site-dependent (local) disorder 
are considered. Results are described in terms of an affective random walk in a 
nondisordered medium. In the cases of global disorder the effective random 
walk contains multistep transitions, so that the continuous limit is not a diffu- 
sion process. In the cases of local disorder the effective process is equivalent to 
usual random walk in the absence of disorder but  with slower diffusion. 
Difficulties associated with the continuous-limit representation of random walk 
in a disordered chain are discussed. In particular, we consider explicit cases in 
which taking the continuous limit and averaging over disorder sources do not  
commute.  

KEY WORDS:  Random Walk; Master Equation; Poisson Noise; Disordered 
Systems; Diffusion. 

1. I N T R O D U C T I O N  

A standard model to study transport properties in the general context of 
disordered systems is random walk in a disordered lattice. (1"2~ In this 
framework, several models have been studied in which the transition 
probability per unit time to jump from one site to a neighboring one is a 
time-independent random variable. We refer to these models as static 
disorder models. More recently the problem has been posed of random 
walk in media with dynamic disorder. ~3 6~ In these problems the transition 
probability per unit time which appears in the master equation (ME) 
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describing ordinary random walk is replaced by a time-dependent random 
process. Random walk in dynamically disordered systems is of relevance 
for diffusion in microemulsion globules (3t and ionic conduction in 
polymeric solid electrolytes, among other systems. (5) 

Not many exact results seem to exist for the problem of random walk 
in systems with dynamic disorder. An early failed attempt in this direction 
appears in ref. 7, where the problem is addressed considering Gaussian 
noise disorder and taking a continuous limit of the random walk ME. We 
come back here to these problems, our aim in this paper being to explore 
a variety of models with dynamic disorder for which explicit exact results 
are given. In our models, dynamic disorder is introduced by transition 
probabilities which fluctuate as Poisson white noise. The use of white noise 
partly destroys correlations among different spatial points. This simplifica- 
tion permits an explicit discussion of several aspects which also appear in 
models with nonwhite noise. Our results should offer a useful guideline in 
these more complicated cases. The use of Poisson noise permits us to main- 
tain the positivity of the transition probabilities so that well-defined 
stochastic models appear at each step of the calculation. The key idea of 
our development, which is also applicable to other situations with non- 
white dynamic disorder, (8) is the exact derivation of effective master equa- 
tions (EME): Starting from an ordinary ME describing random walk in an 
ordered medium, the introduction of stochastic transition probabilities 
defines a stochastic master equation (SME). The average of the SME over 
the noise sources modeling dynamic disorder leads to an EME. The EME 
defines a generalized random walk in an effective nondisordered medium. 
In our models this generalized random walk is still a Markov process 
defined by an ME with effective transition rates. In addition, the con- 
tinuous limit of the EME is always well defined, while other methods to 
obtain continuous representations of the problem are cumbersome, often 
lead to mistakes, and in the best situation require careful interpretation of 
ill-defined quantities. 

Two different classes of models are introduced in Section 2. In a first 
class (global disorder) the noise sources are site independent. In the second 
class (local disorder) the noise sources are site dependent. This second class 
contains the dynamic generalization of the random barrier (RB) and 
random trap (RT) models. ~1'2~ First, in Section 2 we recall basic facts about 
random walk in an ordered chain. In particular, we give an interpretation 
in terms of sample paths of the nondiffusive quasicontinuous approxima- 
tion recently introduced by Doering et  a l3  9~ Section 3 includes our central 
results. We find that starting with an ME which only includes nearest- 
neighbor transition rates, the EME description contains multistep trans- 
itions per unit time in the case of global disorder, but only modified 
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nearest-neighbor transitions in the case of local disorder. In the case of 
global disorder we find faster diffusion or no modification of the diffusion 
constant, depending on the symmetry properties of the model. When the 
disorder is of local nature it always leads to a slower diffusion. Our for- 
mulation leads to diffusion equations for the continuous limit of the models 
with local disorder that we consider. However, the continuous limits of the 
models with global disorder are not diffusion equations, so that the under- 
lying sample paths are not continuous, but contain jump processes. In a 
sense, white dynamic disorder seems to have more important consequences 
for global than local disorder. All these results are interpreted in terms of 
sample paths. Finally, we show in Section 4 that taking a continuous limit 
representation does not generally commute with the averaging over noise 
associated with disorder. We make clear the convenience of taking the 
average that leads to an EME before a continuous limit is considered. 

2. R A N D O M  W A L K  M O D E L S  

2.1. Nondisordered Chain 

Ordinary random walk in a chain is defined by the ME for the 
probability P(N, t) of finding the random walker at site N at time t: 

~?,P(N, t) = #(E + + E -  - 2) P(N, t) (2.1) 

where E +- - e  -+~ are shifting operators: 

E+-f(N) = f ( N  +_ 1) (2.2) 

We are considering a symmetric random walk with jumps only between 
nearest-neighbor sites at a rate r The rate /~ fixes the time scale of 
the process. Introducing a lattice spacing l and a variable x = N l ,  the 
probability density U(x, t ) -  ( l / l ) P ( N =  x/l, t) obeys the equation 

c~,U(x, t)=#(e+~O/~X +e l~  t) (2.3) 

In the continuous limit / ~ o o ,  l--*0, with #12=D, (2.3) becomes the 
diffusion equation for a diffusion process x(t): 

0 2 

O,P(x, t )= D-z-3 P(x, t) (2.4) 
~T X -  

An interesting alternative representation of (2.3) is given by a stochastic 
differential equation (SDE), driven by Poisson white noise sources, for the 
stochastic process x(t). Poisson white noise is defined as a limit in which 
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the duration of the pulses of a generalized Poisson process z(t) (shot noise) 
goes to zero. ~w12~ The process z(t) is defined by 

n(t) 
z(t) = ~ ~oih(t-  ti) (2.5a) 

/ = 1  

where n(t) is a Poisson counting process with probability 

P(n(t) = n) = e -;J (2t)n (2.6) 
n! 

The times t, are uniformly distributed in the interval (0, t), and occur with 
mean frequency 2. The function h ( t - t i )  is a pulse attached to the time t i 
such that h ( t - t i ) =  0 for t < t~. The pulses are weighted by mi, which are 
random independent variables with a probability distribution p(~o) and 
mean value oh. Examples of realizations of generalized Poisson noise with 
rectangular and exponential pulses are shown in ref. 11. In the limit in 
which the pulses h ( t -  t,) become delta functions, the process z(t) becomes 
a white Poisson noise. White Poisson noise ~/(t) is then given by a sequence 
of delta peaks at random times ti determined by a Poisson counting 
process. Imposing a zero mean value, r/(t) is defined as 

n(t) 
rl(t) = ~ fOi~( t - -  ti) -- } ~  ( 2 . 5 b )  

i = 1  

Using the definition (2.5b), Eq. (2.3) is equivalent to 

~(t) = q + ( t ) -  ~/ (t) (2.7) 

where r/+(t) are two independent white Poisson noises with the same 
parameter ,~ = # and same fixed pulse amplitude co i = l. The dot denotes the 
time derivative. Equation(2.3)  can be obtained from (2.7) defining 
P(x, t ) = 6 ( x - x ( t ) ) ,  where the bar denotes average over the noise, and 
using an important formula for the average of ~/(t) with a functional of 
~/(t), ~12~ 

{~ 6n- l~b[~/] (2.8) 
r/(t) ~bEq] =Z n! 6q(t) "-1 

n = 2  

where {~o n} are averages taken with p(co). One finds ~12) 

2] ,xt, ,29, 
k = O  " k = O  " 
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which reproduces (2.3) when p(~o)= ~(~o-l),  2=/~. The diffusion process 
(2.4) for x(t) is obtained in the continuous limit of the representation (2.7) 
noting that for #-~oo,  l--*0 with #12=D, q + ( t ) - q - ( t )  becomes a 
Gaussian white noise of zero mean value and correlation 

( [ q + ( t l ) - q  ( t l ) ] [ ~ l + ( t 2 ) - q z ( t 2 ) ] ) ~ 2 D 6 ( t l - t 2 )  (2.10) 

Also in connection with the representation (2.7) of a free random walk 
it is possible to give an interpretation of the quasicontinuous approxima- 
tion (QCA) to (2.1) recently introduced by Doering et al. ~9) Indeed, if we 
now take for the pulse amplitude an exponential distribution with mean 
value x/-~, p(co)= (1/xf~) e x p ( -  co/x/-~ ), we obtain from (2.9) 

OtP(x, t) = D ~ P(x, t) (2.1 1 ) 
1 - e ~  

Doering et al. obtained (2.11) as an approximation to the Kramers-Moyal 
expansion of (2.3) which contains derivatives to all orders and which 
preserves positivity of P(x, t). 3 Equation (2.11) goes beyond the diffusion 
limit, incorporating discrete lattice effects ( l r  0). In this sense it was intro- 
duced as a correction to the diffusion equation (2.4). We have here 
obtained (2.1 1) by allowing jumps with an exponential distribution of the 
jump size in a discrete random walk. This derivation answers the question 
raised 19~ of the possible interpretation of the QCA (2.11) in terms of sample 
paths: The QCA is equivalent to a Markovian random walk with exponen- 
tially distributed jump size. 

2.2. M o d e l s  w i t h  D y n a m i c  D isorder  

As a first set of models for random walk in a dynamically disordered 
system we consider situations in which the jump rate # becomes a 
stochastic function of time which is independent of the lattice site. This 
stochasticity of /~ might model random changes in the energy of the 
random walker, for instance, through an applied external field. (13) When 
the random part of # is site dependent (local disorder), one is rather 
modeling random changes in the local potential of the medium in which 
the particle is hopping. Within the case of global disorder and in order to 
explore the consequences of symmetry properties, we consider two models. 
In the global-symmetric model (GS), the jump rate # in (2.1) is substituted 
by a random process. As a consequence, the transition probability per unit 

3 For a recent discussion of the positivity of solutions of truncated Kramers-Moyai expan- 
sions see Risken and Vollmer/181 
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time is the same for jumps forward and backward. Replacing in (2.1) # by 
~z + c~(t), where ~(t) is a random process, the GS model is defined by 

GS O,P(N, t) = I~(E + + E -  - 2) P(N,  t) + ~ ( t ) ( E  + + E -  - 2) P(N,  t) 

(2.12) 

in (2.12) is a scaling parameter. Equations like (2.12) will be termed 
stochastic master equations (SME) in the sense that the transition 
probabilities are themselves random functions of time. 

A global asymmetric model (GA) can be constructed by introducing 
two independent random processes {+-(t) for the jump rates forward and 
backward. In this case the transition rate per unit time for jumps 
N ~ N +  1 is different than for jumps N - - + N - 1 ,  although both rates are 
independent of N. The SME defining this model is 

GA ~ t P ( N , t ) = # ( E +  + E - - 2 ) P ( N , t ) + ~ - ( t ) ( E + - I ) P ( N , t )  

+ e ~ + ( t ) ( E -  - 1) P(N, t) (2.13) 

Equations (2.12) and (2.13) define P(N,  t) as a functional of the noise 
{(t) or {-+(t). For each realization of the noise these equations still have 
the meaning of an ME provided that the stochastic transition rates 
/~+c~{(t) or /~+~{+(t) remain positive. This requirement places severe 
limitations on the possible choices of the noise. In particular, Gaussian 
noise is not allowed, because it has unbounded positive and negative 
realizations. Following past experience with a similar problem, 112~ we 
choose here to model the random processes ~(t) and ~+(t) by Poisson 
white noise as defined in (2.5b) with parameter 2 and mean value {co} _= a3. 
We note that in (2.13) {+(t) and ~ (t) are taken as independent processes, 
although with the same parameters 2 and o3. A Poisson white noise is 
bounded from below: 

~(t)~> -Ach, ~+(t)>~ -Ao3 (2.14) 

so that the positivity requirement for the transition rates is satisfied 
whenever # -  ~2& >~ 0. Fulfilling this condition and with our choice of {(t) 
and {+(t), (2.12)-(2.13) characterize well-defined stochastic processes 
which model random walks in systems with global dynamic disorder. 

We now introduce models with local disorder. We first consider the 
generalization to the dynamic case of two well-known models of static dis- 
order, namely the random trap (RT) and random barrier (RB) models3 ~'2) 
Starting from a general one-step ME, 

c3tP(N, t )=  W + ( N  - 1, t) P ( N -  1, t) + W - ( N  + 1, t) P ( N  + 1, t) 

- [ W + ( N ,  t ) +  W (N, t)] P(N, t) (2.15) 
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the symmetry properties of the two models are such that in the RT case 
the transition rate from a site N is the same for transitions forward and 
backward, while in the RB case the transition rate N ~  N +  1 is the same 
as for the transition N + 1 ---, N. 

In order to model a system with local dynamic disorder, one associates 
an independent Poisson white noise IN(t) with each site N. We take the 
same parameter values 2 and c5 for any ~N(t). For the generalization of the 
RT model to dynamic disorder we take 

W -  (N, t ) =  W+ (N, l ) = #  + ~ u (  t) (2.16) 

SO that the appropiate SME reads 

RT O,P(N, t) = # (E  + + E - 2) P(N,  t) + (E + - E -  - 2) e~x( t )  P(N,  t) 

(2.17) 
For  the generalization of the RB model we take 

W (N, t ) =  W + ( N - i ,  t ) = # + c ~ N ( t )  (2.18) 

W - ( N +  1, t) = W+ (N, t) = # + C~N+ l(t) (2.19) 

and the appropriate SME reads 

RB QtP(N, t ) = # ( E  + + E  - 2 )  P ( N , t ) + ~ N + I ( t ) ( E  + - l l P ( N , t )  

+ ~ N ( t ) ( E -  -- 1 ) P(N,  t) (2.20) 

In the limit in which ~x(t) becomes site independent both models (2.17) 
and (2.20) reproduce the GS model (2.12). A model with local disorder and 
intrinsic asymmetry in the transition rates can be introduced by choosing 

W e (N, t) = # + ~ +  (t) (2.21) 

so that the associated SME is 

~?,P(N, t) = # ( E  + + E -  - 2) P(N,  t) + (E + - 1) c ~ ( t )  P(N,  t) 

+ ( E -  - 1) c~{+ (t) P(N,  t) (2.22) 

For site-independent noise, (2.22) gives rise to the GA model (2.13). 
The three SMEs just introduced for systems with local disorder define 

well-behaved ME when the same condition ( # -  c~2(5 >~ 0) as for global dis- 
order is satisfied. In the limit in which the random processes ~N(t) become 
time-independent random variables one recovers the well-known models of 
static disorder. This would correspond to considering nonwhite noise ~N(t) 
with a finite correlation time r and taking the limit z ~ m. 
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3. E F F E C T I V E  M A S T E R  E Q U A T I O N S  

In this section we derive EMEs for the models introduced above. The 
basic idea is to consider that an SME defines P(N, t) as a functional of the 
noise sources, so that, averaging over the realizations of the noise, one 
arrives at a new ME, the EME, for the averaged probability distribution 
P(N, t). The EME for P(N, t) defines a Markov process which includes the 
effects of the disorder in the random walk properties. The fact that the 
EME can be obtained exactly and that it defines a Markov process is a 
consequence of the use of white noise, which greatly simplifies the problem. 
Statistical properties are easily obtained from the EME. 

3.1. Gobal  D isorder  

We indicate by (...) the average over the realizations of ~(t). Let us 
first consider the average of the GS model (2.12). The only difficulty 
appears in the calculation of ~(t) P(N, t). This average can be done using 
the general formula (2.8): 

{~o ~} 6 = 1P(U,t) 
r P(N, t )=) ,  

n=2 ~ n! 6~(t)" 1 

= 2  L ~ E ~ (  E + + E  -2)]=-1P(N,t)  (3.1) 
n = 2  

Substituting (3.1) in the average of (2.12), we arrive at the EME for the GS 
model: 

SiP(N, t )=  E ( # - 2 ~ ) ( E  + + E  - 2 ) + 2 { e  '~IE++E--2)-  1}] P(N, t) 
(3.2) 

where {...} is the average over the distribution p(~o) for the pulse 
amplitudes. For fixed amplitudes p(~o)=6(co-e3), the average is directly 
read from (3.2). For an exponential distribution p(r (1/o5)exp(-~o/ch) 
we find 

OtP(N, t )=  /~(E + + E  --2)+2e2e5 2 1--~eS(E + + - - 2 )  
(3.3) 

The EME for this model can be easily solved by Fourier transformation: 

Pq(t) = ~ e-iqUp(N, t) (3.4) 
N 
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The solution with initial condition P(N, O) = (~N,O is 

Pq(t) = e-~ql' 

where 

(3.5) 

ev(q) = 2(/~ - 2~ch)(1 - cos q) + 211 - e x p [  -2c~ch(1 - c o s  q)] ] (3.6) 

for fixed (F) amplitude of the noise pulses and 

eE(q) = 2#(1 --COS q ) -  2Ode5 2 [2(COS q--  1)]2 
1 + 2eeS(1 -- COS q) 

(3.7) 

for exponentially (E) distributed amplitudes. The statistical moments of 
P(N, t) are obtained from the usual formula 

< N---~ ) (_ i )m m "  = 63qPq(t)]q=O 

The notation ( . . . )  indicates the average over P(N, t) and ( . . . )  indicates 
the average over P(N, t) obtained by averaging ( . . . )  over the realizations 
of ~(t). Results for the second and fourth moments are given in Table I. 
These results indicate that symmetric global white dynamic disorder does 
not change the diffusional behavior of ( ~ 7 ) ,  but it does change the short- 
time behavior of ( ~ z ) .  

The EME for the GA model (2.13) is obtained following the same 
method. From (2.8) we now have 

2 
~+-(t) P(N, t) {e~O~le~ -1) 

c~(E T - 1) 
- ~ o ( E ~ - - 1 ) - I } P ( N , t )  (3.8) 

so that 

c~tP(N, t)= [ ( # -  2aeS)(E + + E - - - 2 )  

+2{e~CS(E+-l}+e "~ 1)--2}] P(N, t) (3.9) 

The explicit form of the EME for exponentially distributed amplitudes 
becomes 

c3,P(N, t) = lt(E + + E -  -- 2) P(N, t) + 20~2o32 

(1 + ~3) (E  +2 + E -2 - 2) -- 2(1 + 2~ch)(E + + E -  - 2) - -  
• 

1 - c . 5 ( 1  + ~ c h ) ( E  + + E -  - 2 )  
P(N, t) 

(3.10) 
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The solution of the EME can also be given by (3.5) with 

Sv(q) = 2(/~ - ct2o3)(1 - cos q) - 2[e ~(e-'q 1)+ e~e '~-  t )_  2] 

~E(q) = 2#(1 - cos q) + ),a2~h 2 (3.11 ) 

2(1 + ~(5)(1 - cos 2q) - 4(1 + 2~05)(1 - cos q) 
x (3.12) 

1 + 2ct(5(1 + ~05 )( 1 - cos q) 

The associated first moments are also given in Table I. These results 
indicate that the existence of normal diffusion (N-~) oc t  is not changed, 
but contrary to what happens in the symmetrical model, the value of the 
coefficient d =  ( ~ ) / ( 2 t )  is changed by the presence of disorder, giving 
here a faster diffusion. The behavior of the fourth moment is changed both 
for short and long times. 

It is interesting to understand the EMEs (3.2) and (3.9) in terms of 
effective transition probabilities. A remarkable fact is that (3.2) and (3.9) 
imply the existence of nonvanishing probabilities for transitions N-*  N + n 
with arbitrary step n. In order to identify such effective transition 
probabilities per unit time ff'(N--* N_+ n), one has to expand the exponen- 
tials involving the shifting operators E -+ and rearrange the resulting series. 
For the GA model, (3.9) can be rewritten as 

cg,P(N, t ) =  ~22({e -~~ } - 1  +cr  (E + + E  )(/~-2:r +),~{~oe ~ } )  

+ (E+~+E ~ t ~ . { c ~ e  ~o~} P(X, tt (3.13) 
n = 2  

so that 

I~(N --* N -t- 1 ) = p - ),~ch + 2~ { toe - ~ } 

2~ {eg"e ~ } ,  n > 1 VV ( N --, N +_ n) = -~. 

(3.14) 

(3.15) 

Likewise, for the GS model (3.2), it is found that 

W(N•176 (gr176 } (3.16) 
r=0 r! (n + r)! 

The existence of these multistep transitions can be understood in terms 
of the representation (2.7) of normal random walk. In the absence of dis- 
order the random walker jumps forward or backward following the delta 
pulses of a given realization of t/+(t). The mean time between pulses /~-J 
fixes the transition probability per unit time for moving one step of size 

822/55/5-6-12 
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n = 1. Jumps of size n > 1 have zero probability. In this picture, our models 
of dynamic disorder correspond to the assumption of a stochastic mean 
time between pulses. The substitution of/~ by # + c~-+(t) implies that the 
stochastic mean time between pulses [/~ + c~r - t  vanishes at times at 
which r -+ (t) has a delta pulse. This occurs, on the average, at time intervals 
2 1. When the mean time between pulses of ~+-(t) vanishes there is an 
accumulation of pulses, which gives rise to effective transition rates of 
arbitrary size n > 1. This idea of the dynamic process permits us to give a 
physical argument to obtain directly (3.14)-(3.15): 

IT'(N--. N +  n) = lim P(N(3) = n) (3.17) 
~ 0  6 

where P(N(3)=n) is the probability that r/+(t) has n pulses in the time 
interval 3 for a given realization of ~ + (t). Given the Poissonian character 
of t/+ (t), 

P(N(~))=n)=exp l -  f,'+~ ds[# + a~ + (s) ]] 

x ~  ~s I-~ +~+(s/]  (3.18) 

Since in (3.17) we only need P(N(6)=n) to first order in 3, and, in this 
order, the probability of a delta pulse of ~+(s) in the interval 6 is 26, we 
can calculate (3.17) for n > l  by replacing in (3.18) ~+(s) by 
e ) i 3 ( s - t i ) - 2 e 5  (with t < t i<  t +  3) and multiplying the resulting expres- 
sion by 26. This reproduces (3.15). To obtain (3.14), one needs to add the 
probability P(N(3)= 1) when there is no pulse of 4. 

The above argument to obtain (3.14)-(3.15) makes implicit use of the 
global character of the disorder and of the independence of ~ § and ~-.  
This is seen in the dynamic path considered in (3.17) (3.18). This path 
consists in n jumps forward through the n sites between N and N +  n. The 
global character is taken into account because the same noise ~+(s) is 
attached to each site, so that the probability of having a delta pulse of 

+ (s) in the interval 6 in each intermediate site is given by the same factor 
23. The independence of ~+(s) and ~-(s)  is used because paths of n+r 
jumps forward and r jumps backward due to pulses of r + (s) and ~-(s)  are 
not considered in (3.17). For these paths a delta pulse of both ~+(s) and 

-(s)  needs to occur. The probability of having any of these pulses in 3 is 
23, so that the probability of both pulses is of order 62 and it does not con- 
tribute in (3.17). The physical difference between the GS and GA models 
becomes quite clear at this point. In the GS model, ~+(s)=~-(s)=~(s) 
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and paths from N to N +  n including jumps backward contribute in (3.17). 
The total number of jumps n + 2r is a Poissonian variable of average 2ec5. 
Taking into account the number of differents paths, given by (,+2~), we 
obtain (3.16). Basically, the GS model corresponds to a random walk in a 
stochastic time (the time scale /~ becomes stochastic), while in the GA 
model we have two independent stochastic time scales for jumps forward 
and backward. As a consequence, for each realization of ~(s), the GS 
model respects the symmetry between jumps forward and backward of the 
random walk in the nondisordered case. Then the stochastic diffusion coef- 
ficient 1/2 d(N2)/dt is given by [#+a~(t) ] ,  whose average is just /~, so 
that no modification occurs in the diffusion coefficient. On the other hand, 
in the GA model and for a realization of ~+(s) and r a net drift 
appears. The average over realizations restores the symmetry in the effec- 
tive process, but the underlying asymmetry speeds up the diffusion process. 
This explains the change found in the diffusion coefficient for the GA 
model. 

3.2. Local Disorder 

The EME for the dynamic RT model is obtained by taking the 
average of (2.17). To do this, it is important to recall the independence of 
~N(t) at different sites N. Noting that 

( E  + + E - 2 )  O~N(t ) P(N, t) 

= o~(~N+I(I)E+P(N, t)+~N l(t) E P(N, t)-2~N(t)P(N, t)) 

and making again use of (2.8), we have 

{ 
~N(t) P(N,t)=2 -~. ( - 2 a ) " - i P ( N , t ) = - ~ - s  - 

n = 2  

1 + 2 ~ o  } 

(3.19) 

so that 

( ')~{ e-2a~~ - 2a~o}) [E+ + O,P(N, t )=  # - ~  1 + E - 2 ]  P(N, t) (3.20) 

which for exponentially distributed pulses becomes 

( OtP(N, t )=  # 1 +2a~o} [E+ + E -  - 2 ]  P(N, t) (3.21) 
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The EMEs (3.20) and (3.21) are one-step MEs. Therefore they have the 
same mathematical properties as the original ME, (2.1), for ordinary 
random walk except for the modification of the jump rate #. In particular, 
the solution of (3.20)-(3.21) is 

P(N, t) = e-2m~tlN(2#errt ) (3.22) 

where IN is a modified Bessel function and the effective jump rate #err is, for 
fixed and exponentially distributed pulses, respectively, 

2 
~eFff = /2 - - ~  (e -2c~c~ - -  1 --~ 0~(,o) ( 3 .23 )  

2)~ 2032 
P~rf = # 1 + 2cm5 (3.24) 

The explicit forms of the second and fourth moments are given in Table I. 
Our result indicates that in the dynamic RT model the introduction of 
disorder only amounts to a change in the time scale of evolution. Since 
# > Peer, the process slows down. Note that the positivity of #~ff is guaran- 
teed by the requirement # > 2 ~ 3  and that the diffusion is slower for 
exponentially distributed pulses (]/eftV > ]'/eft)'E 

The main obvious difference between (3.20)-(3.21) and our results for 
global disorder is that we do not find now allowed transitions with jumps 
beyond the nearest neighbor sites. The reason for that can be understood 
by recalling the argument following (3.17): The accumulation of pulses per 
unit time was possible for global disorder because the same noise acts at 
each site during the path N - - * N + n .  We now have uncorrelated noise 
sources at each site acting locally and no accumulation of pulses can occur, 
by the same argument as the one given to see that paths involving jumps 
forward and backward could not contribute to ff/(N--, N + n )  in the GA 
model: a path involving n pulses does not contribute in a probability per 
unit time. This argument is quite general for any model including local dis- 
order given by independent noise sources at each site. In fact, we find 
below that for all the models with local disorder introduced in Section 2, 
the associated EME only includes one-step jumps. 

The EME for the dynamic RB model (2.20) is obtained in a similar 
way. We first rewrite (2.20) as 

(3,P(N, t )=  p[ E + + E -  - 2 ] P(N, t )+~l -E + - 1] ~N(t) P(N, t) 

+ ~ [ E  - 1] ~N+I(t)P(N,  t) (3.25) 
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The averages ~N(t)P(N, t) and ~N+l( f )P(N,  t) are calculated using (2.8). 
The functional derivatives involved are 

and 

so that 

~5"P(N, t___) _ (_2a)~ 1 ~ [ E -  - 1] P(N, t) (3.26) 
~N(t )  n 

6"P(N, t) 
( - 2 ~ )  "-~ ~[E + - 1] P(N, t) (3.27) 

3~x+~(t) ~ 

~2 
iN(t) P(N, t) = (_2~)  2 

~2 
~N+ I(t) P(N, t ) =  (_2 , )2  

e - 2 ~ ~  (3.28) 

e - 2 ~ " ) - l + 2 ~ o g } [ E + - l ] P ( N , t )  (3.29) 

Whit (3.28) and (3.29) substituted in (3.25), the EME turns out to be 
identical with (3.20) found for the RT model, as is the case for static 
disorder. (14) 

We finally consider the EME for the model (2.22) with local asym- 
metric dynamic disorder. The average of (2.22) is more easily taken by 
rewriting it as 

8 t P ( N , t ) = a [ E  + + E  - 2 ] P ( N , t ) + e r  

+c~ + 1(t) P ( N - l , t ) - ~ [ ~ v ( t ) + ~ u ( t ) ] P ( N , t )  (3.30) 

The functional derivatives involved in calculating ~ ( t ) P ( N ,  t) from (2.8) 
are easily evaluated from (3.30). We obtain 

~ + (t) P(N, t) = - ! {e ~ - l + a ~ o } P ( N , t )  (3.31) 

Substituting (3.31) in the average of (2.22), we arrive at 

~ P ( N , t ) = ( # - A { e  ~ - l + ~ o } ) [ E  + + E - - 2 ] P ( N , t )  (3.32) 

This is again a one-step ME very similar to (3.20). The effective jump rate 
#eft is n o w  

v - 2 ( e  -~j  1 +~o3) (3.33) #~ff = # 

,~0~ 20) 2 
E (3.34) #el f  = # l+a~5 
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Therefore we find an overall behavior very similar to the RB and RT 
models but with a larger jump rate #eff" Explicit results for the moments are 
given in Table I. 

A general conclusion is that for models with local disorder we find a 
slower diffusion. This happens because the effect of disorder is to increase 
the average time spent by the random walker at a given site. This can be 
seen by considering the probability of having no jumps from a site N in a 
time interval c5. For example, for the RT model this probability is given by 

exp l - -2  ft'+6ds(# +C~N(S))] 

3.3. Cont inuous Limit 

The EMEs derived in Section 3.2 give a complete well-defined descrip- 
tion of the different models introduced for random walk in dynamically dis- 
ordered chains. In many cases a simpler continuous limit description would 
be desirable in the same way that the diffusion process (2.4) accounts for 
the main features of the discrete random walk defined by (2.1). The EMEs 
are a particularly useful starting point for obtaining meaningful continuous 
limits for models of random walk in disordered media. Our strategy is to 
consider the noise sources to be given and independent of the random walk 
dynamics. Therefore we keep the parameters 05 and 2 fixed when taking the 
continuous limit. The parameter # is scaled in the same way as for random 
walk in a nondisordered chain, #12= D. The scaling with t of the coupling 
parameter c~ is determined by requiring that a finite effect of the disorder 
is found in the continuous limit. The continuous limit is taken as we did 
in (2.3), defining 

P(x, t) = l im (1/ l )  P ( N = x / I ,  t) 
l ~ 0  

For the GS model, Eqs. (3.2) and (3.3), we take ~12=A. Introducing 
the notation W =  A05, it is straightforward to obtain from (3.2) for the case 
of fixed amplitude of the pulses 

~tP(x, t ) =  ( D -  2W) 3~P(x, t)+2[exp(WO~.)- 1] P(x, t) (3.35) 

For exponentially distributed pulses we obtain from (3.3) 

6,P(x, t) = (D - 2W) 3~P(x, t) + )~ - -  P(x, t) (3.36) 
1 - W ~  
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Equations (3.35) and (3.36) are not diffusion equations. They describe, at 
a continuous level, the modification of the diffusion process (2.4) due to 
dynamic disorder. Both equations contain even derivatives with respect to 
x to all orders. This implies the existence of noncontinuous sample paths. 
The positivity of the solutions of (3.35) and (3.36) is guaranteed by the 
condition imposed on the transition rates of the SME, which for the 
parameters appearing in the continuous limit becomes D ~>2W. In fact, 
(3.36) has the same formal structure as the QCA (2.11) for which positivity 
of the solution has been explicitly proved. (9) One can also check that no 
divergent modes appear when (3.35) and (3.36) are Fourier transformed. 

For the GA model (3.9)-(3.10) a different scaling of c~ is necessary. 
We now take c~l=A and W=Ac3, obtaining from (3.9) for fixed pulse 
amplitude 

c?~P(x, t)=D~?~P(x, t)+2(eV/~x+e-W~x-2)P(x, t) (3.37) 

and from (3.10) for exponentially distributed pulses 

2 

c~,P(x, t)=D t)+22W2 1 2 2 O2p(x, ~?x P(x, t) (3.38) 
- W O x  

The scaling c~12= A used in the GS model gives here divergent coefficients 
in the equation for P(x, t). The difficulty is similar to the well-known one 
found when taking the continuous limit of a random walk in a nondisor- 
dered chain with unequal rates for jumps forward and backward/15~ We 
have already noticed that for each realization of ~+(t), ~-(t) we have in 
the GA model a nonvanishing drift. This is the reason behind the need of 
using a scaling ~I=A. The general comments made for (3.35) and (3.36) 
apply also to (3.37)-(3.38). 

The difference found from the EMEs between the diffusion coefficient 
for the GS and GA models remains in the continuous limit. However, the 
basic difference between the two models in the continnous limit is seen 
upon comparing (3.35) with (3.37). Equation (3.37) implies the existence of 
jumps of the random walker of fixed amplitude W, while in (3.35) the 
jumps have no fixed amplitude. The reason behind this difference is that, 
as explained before, for the GA model only forward jumps contribute to 
f f ' (N~N+n)  in (3.15). The number of jumps which contribute to if," 
is a Poissonian variable with average ~3. In the continuous limit, 
V/(N~N+_n)~26(x/l--~dg). In the GSmodel, paths from N to N+n 
contain jumps forward and backward. The number of jumps is also a 
Poissonian variable of average 2e(5, but now the sign of individual jumps 
is random and independent from one jump to another. In the continuous 
limit the number of jumps is concentrated at its average value 2ec5 = 2 W/l 2. 
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Applying the central limit theorem, one finds that the displacement tends 
to a Gaussian distribution of zero average and variance 2W. We will see 
below that in this way we recover the second term of (3.35), which 
corresponds to pulses of the noise. 

For our three models with local disorder, the scaling ~12= A is used. 
The same continuous limit equation is found for the RT and RB 
[Eq. (3.20)] and local asymmetric [Eq. (3.32)] models ( W =  Ach): 

O,P(x, t) = (D - 2W) 02 P(x, t) (3.39) 

Equation (3.39) is the same for fixed or exponentially distributed pulses. 
This result indicates that the three models coincide in the continuous limit 
with a diffusion process with effective diffusion coefficient /3 = D -  2 W =  
lim~_ 0 12~efr �9 Diffusion becomes smaller due to disorder effects. Differences 
found in the discrete case are washed out in the continuous limit because 
only the systematic part of the noise (-~)~ch) survives in this limit. In the 
continuous limit the contribution of the pulses of noise could only have an 
effect if its rate )~ would scale as 1-2, while we are considering here 2 as a 
constant in this limit. The continuous limit of the moments in Table I is 
easily obtained and can be also directly calculated from (3.35)-(3.39). 

An interesting question is the representation in terms of sample paths 
of the processes found in the continuous limit. This question is answered by 
finding the SDE for the processes x( t )  equivalent to (3.35)-(3.39). For the 
models with local disorder this is an easy task, since (3.39) is equivalent to 
the usual Langevin equation for Brownian motion. 

2(t) = Z(t) (3.40) 

where X(t) is a Gaussian white noise of zero mean and correlation 

(Z(t) X(t')) = 2(D - 2W) 6(t - t') (3.41) 

We now consider the equations for the paths x(t)  for the models with 
global disorder. Equations (3.35)-(3.38) imply that x(t)  is not a diffusion 
process. The second term in the right-hand side of these equations is 
associated with jump processes. Quite generally, the Langevin-like equa- 
tions for x( t )  should then contain a noise term associated with diffusion 
and other noise terms giving rise to the jump contributions. The explicit 
equation can be obtained by inspection of (3.35)-(3.38) and comparison 
with previous results. The GA (3.37)-(3.38) is easier to discuss: The com- 
parison of (3.37) with (2.3) permits us to interpret (3.37) as a superposition 
of normal diffusion with coefficient D and random walk with jump rate 2 
in a lattice with spacing W. Likewise, the comparison of (3.38) with (2.11) 
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identifies (3.38) as a superposition of normal diffusion with coefficient D 
and random walk with jump rate )o and jump amplitude exponentially 
distributed with mean value W. In summary, the appropriate SDE for x(t) 
is 

k(t) = Z(t) + r/+(t) - q - ( t )  (3.42) 

where Z(t) and r/-+(t) are independent stochastic processes. Now, Z(t) is a 
Gaussian noise of zero mean and correlation ( Z (t) Z (t') ) = 2D6 (t -- t' ), and 
q• (t) are independent white Poisson noise (2.5b) with the same parameter 
2. To obtain (3.37), q+(t) have pulses of fixed amplitude W, and to obtain 
(3.38), they have pulses with exponentially distributed amplitude of mean 
value W. 

Equation (3.36) for the GS model is similar to (3.38) and for the same 
reason the stochastic equation for the paths x(t) is also (3.42), but with 
different parameters of the noise sources Z(t) and fl+-(t). The parameter D 
is now replaced by D - 2 W ,  q+-(t) have parameter 2/2 instead of 2, and W 
is replaced by W 1/2. 

The equation for x(t) equivalent to (3.35) comes out to be 

.~(t) = z ( n  + ~(t) (3.43) 

where Z(t) is again Gaussian white noise with correlation ( Z ( t ) Z ( t ' ) ) =  
2 ( D -  )~W)6(t-t ')  and 1/(t) is a Poisson white noise (2.5b) with parameter 
2 and pulses of amplitude given by a Gaussian distribution: 

p(~o) = (4nW) 1/2 exp(_~o2/4W) (3.44) 

The origin of these pulses with Gaussianly distributed amplitude was dis- 
cussed above. To prove the equivalence of (3.43) and (3.35), one defines 
P(x, t ) -  6 ( x -  x(t)) and averages the equation for &(x-  x(t)): 

Ot6(x-x( t ) )= -OxZ( t )6 (x -x ( t ) ) -Ox f l ( t )6 (x -x ( t ) )  (3.45) 

The Gaussian average over Z(t) gives the diffusion term in (3.35). The 
average over ~/(t) is taken using (2.8) and it reproduces the second term in 
the rhs of (3.35). 

The result for GS with exponentialy distributed pulses is recovered by 
replacing the Gaussian (3.44) by the exponential resulting from averaging 
(3.44) with an exponential distribution for the pulse amplitude W. 

4. C O N T I N U O U S  L I M I T  OF S T O C H A S T I C  M A S T E R  
E Q U A T I O N S  

In this section we wish to address the following question: We have 
introduced models defined by SMEs whose average over stochastic 
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disorder gives rise to EMEs. The continuous limits of the EMEs have been 
discussed. If one is only interested in the continuous limit, it might seem 
simpler to take the continuous limit of the SME and later make the 
average. If the continuous limit and stochastic averaging commute, the two 
procedures should give identical results. We will show that this not always 
the case and one might find that the continuous limit of the SMEs does not 
properly exist when the same continuous limit of the EMEs is well defined. 
Even when the two procedures commute, the continuous limit of the SME 
is often plagued with ill-defined quantities and great care is needed to 
obtain the correct result. Our conclusion and message is therefore that it is 
always safer and simpler to take the path through the EME in which no 
difficulties appear and everything is well defined at each stage of the 
calculation. 

As a separate matter it is interesting to note that if the continuous 
limit of the random walk ME is taken before introducing sources of disor- 
der, there is no natural way of defining some of the models considered here. 
For  example, it is not simple to implement the idea behind the GA model 
if the starting point is the diffusion equation (2.4). In general, there are 
several models of random walk in a disordered chain which give different 
results in the continuous limit but which are difficult to introduce in the 
continuous limit of random walk in an ordered chain. 

4.1. Global  D isorder  

For global disorder, noise sources are site independent and no 
difficulties are expected when taking the continuous limit of the SME. We 
give here the results for completeness. The continuous limit is defined as in 
Section 3.3 and the same scaling of parameters is used. For  the GS model, 
a/z= A, and the continuous limit of the SME (2.12) becomes 

a,P(x, t) = [D + A~(t)] OZP(x, t) (4.1) 

Likewise, for the GA model with c~l=A we obtain from (2.13) 

O,P(x,t)={D~?~+A[~ ( t ) - ~ + ( t ) ] } C ~ x ] P ( x , t )  (4.2) 

At this level of description the differences between the GS and GA models 
are clear. Equation (4.1) describes a pure diffusion process in which the dif- 
fusion coefficient is a positive-definite, time-dependent stochastic quantity. 
The stochastic part averages to zero and it does not modify the coefficient 
d -  (N2)/(2t). On the other hand, (4.2) includes a stochastic drift due to 
the independence of ~ - ( t )  and ~+(t). This stochastic drift was already 
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mentioned before. It averages to zero, but it contributes to the coefficient 
d, giving rise to faster diffusion. 

The continuous limit (3.35)-(3.38) of the EMEs can be obtained from 
(4.1) and (4.2) by alternative methods. One is showing the equivalences of 
(4.1) and (4.2) with (3.43) and (3.42) respectively. More directly, the 
average of (4.1) and (4.2) can be taken using once more the general 
formula (2.8). In (4.1) we obtain 

~(t)~P(x,~ . t)=2doO~2 L ((hA Ox)2 k p(x , t )  
k = l  

(4.3) 

while for (4.2) we have 

~(t) ~?~P(x, t) = T-ZFo c? x L (FoA ~?x) k P(x, t) 
k = l  

(4.4) 

Equations (4.3) and (4.4) are for noise with exponentially distributed 
amplitude of the pulses. Introducing them in the average of (4.1) and (4.2), 
we recover (3.36) and (3.38). A similar derivation can be given for noise 
with fixed amplitude. 

4 .2 .  Loca l  D i s o r d e r  

We first consider the RT and RB models, and the more delicate local 
model with intrinsic asymmetry is discussed later. To find the continuous 
limit of the SME (2.17) associated with the RT model, we rewrite (2.17) as 

O,Pl(x, t) = (e la~ + e -zex - 2)[/~ + c~Z(x, t)]  U(x, t) (4.5) 

where we use the same notation as in (2.3). Taking the limit !-~ 0 with the 
scaling A = ~l 2, we obtain 

3,P(x, t) 2 =3xED + Ar t)] P(x, t) (4.6) 

Likewise for the SME (2.20) associated with the RB model we have 

~?,Pt(x, t) = #(e tax + e-l~ _ 2) Pl(x, t) 

- (e zax-  1) ~l(x, t)(e tox_ 1) U(x, t) (4.7) 

which in the limit l--*0 with A = 7l 2 reduces to 

O,P(x, t)= D O~P(x, t) + A Ox~(x, t) ~xP(x, t) (4.8) 
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It is important to note here the different position of r t) relative to the 
operation 8x in (4.6) and (4.8). For static disorder (4.6) and (4.8) concide 
with the continuous limits used in ref. 16. Other continuous limits have 
been proposed in the literature. 4 The formal derivation of (4.6) and (4.8) 
can be justified by taking the limit l ~ 0 in a weak sense, that is, consider- 
ing only averaged quantities. However, the real problem is not with the 
form of (4.6), (4.8), but rather with the meaning to be given to 
~(x, t ) = l i m ~ o ~ t ( x ,  t). In fact, to give sense to averages which involve 
~(x, t), one is forced to go back to the original discrete version, so that 
equations like (4.6) or (4.8) are of little operational significance. To begin 
with, we need a precise definition of ~t(x, t) for a continuous variable x. We 
take ~t(x, t) to coincide with ~u(t) when N - l / 2  < x < N +  l/2: 

~(x, t) = ~ H(x - Nl) ~N(I) (4.9) 
N 

H ( x - N l ) - O ( x - N l + ~ ) - O ( x - N l - ~ )  (4.10) 

where O(x) is the Heaviside step function. Similarly, and being precise in 
the definition used in (2.3), 

P'(x, t ) - ~  H(x - -N l )  P(N, t) (4.11) 

The statistical properties of the stochastic process ~(x, t) are determined by 
the set of its cumulants. Given that for independent Poisson white noise 

<<~NI(/1) ~N2(/2) " '"  ~Nn(tn))) 

= j [ { ~ n }  (~(t__tz)O(tl__t3)...(~(tl__t,)(~U~UzC~U, N3...(~UzN, ( 4 . 1 2 )  

we have 
(( ~l(Xl, t l ) ' ' "  ~l(Xn, tn) )) 

= ,~{co n } 6 ( t l - t 2 ) . . . 6 ( t ~ - t ~ )  H ( x , - x 2 ) . . . H ( x , - x ~ )  (4.13) 

so that 

((~(Xl, tl).--#(x,,, t,))> 

= fl{~o n } 6(tl - t2)... 6(tl - tn) 6x~x2"'" 6x~.,~ (4.14) 

4 For example, in ref. 7 and using the scaling A = ~l the proposed equation for the RB model 
is 

3,P(x, t)= D 3~P(x, t)+ A[~(x +, t)-~(x, t)]  OxP(x, t) 

Averages calculated with such an equation give results with no effect of the disorder. This 
is not immediate to see when dealing with ~(x, t), but it is obvious if one takes the con- 
t inuous limit of the EME (3.20) with the same scaling A -  cd, which gives pure diffusion. 



Poisson Whi te  Noise Disorder 1049 

where 6~,.~j is a Kronecker delta. The difficulties which appear in deriving 
a continuous limit without taking first the average of the SME are due to 
the handling of these Kronecker deltas for a continuous variable x. 

To make such difficulties clear, let us attempt the evaluation of 
~(x, t) P(x, t) in (4.6). To do this, we need the generalization of (2.8): 

~(x,t) P(x,t)=)~ ~ { ~ }  f dxl. . .dx,  id t l ' "d t ,  1 -U-. 
n = 2  

X ( ( ~ ( X ,  [)  r  t l ) ' "  "~ (X n 1' [ n - l ) ) )  

6" IP(x, t) 
x (4.15) 

c ~ ( x  l ,  t l ) ' - ' c ~ ( X ~  1, t~ ~) 

When substituting (4.14) in (4.15), one immediately finds quantities 
requiring a careful interpretation, 5 A way to avoid these problems which 
permits us to obtain the correct average of (4.6) is to define 

~(x, t) P(x, t) = lim ~Z(x, t) U(x, t) (4.16) 
t ~ 0  

The rhs of (4.16) is evaluated using (4.15) for ~ and pt and taking into 
account (4.13): 

it(x, t) P'(x, t) 

2 
,=2 n! J~-z/'2 ,x-l/z lcS~(Xl, t ) . - -6~(x,  1, t) 

(4.17) 

The functional 
from (4.5): 

6U(x, t) 
6~t(x ', t) 

derivatives in (4.17) are evaluated, for the RT model, 

- -  - ~ ( ~ ( x  + l - -  x ' )  P t ( x  + l, t)  

+ 6 ( x - l - x ' ) U ( x - l , t ) - 2 d ( x - x ' ) U ( x , t )  (4.18) 

For example, one has, for n = 2, 

f d~cl ~x,.~, A 6(x - x 1 ) P(x,  t) ~ 2 
Ox 

The correct interpretation of this expression is found to be 

l im( -2A/ I  z) P(x,  t) 
l~0 
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so that if x'  ~ ( x - l/2, x + l/2), 

6U(x, t) 
6~(x ', t) 

2 e f ( x - x ' )  Pl(x, t) 

and 

~(x ,  t )Pt (x ,  t) 

~ {~o ~} 
= , t  ~2 - - -~?  ( -2~)~  ' P ' ( x , t )  

( 2 {e 2 ~ _ 1 } _ ) ~ o 5  U ( x , t )  = - ~  

(4.19) 

l ~ 0  , -2c5  P(x,  t) (4.20) 
A = cxl 2 

An important point to note an (4.20) is that the finite result in the 
limit l--* 0 is the sum of an alternating series in which any individual 
term diverges. The continuous-limit equation (3.39) for the RT model is 
reobtained by taking the average of (4.6) with (4.16) and (4.20). The same 
result (3.39) for the RB model is obtained from (4.8) using (4.16)-(4.17) 
and calculating the functional derivatives from (4.7). 

The path followed here to obtain the continuous limit for the prob- 
ability distribution averaged over the sources of disorder is even more 
subtle for the local model with intrinsic asymmetry (2.22). The SME (2.22) 
can be rewritten as 

OtPt(x, t) = g(e ~~ + e te~ _ 2) Pt(x, t) 

+ c~[(e 1~x- 1) ~l(x, t )+  (e ~ -  1) ~Z(x, t)] U(x ,  t) (4.21) 

Introducing the same scaling ~12=A that was needed to obtain the 
continuous limit of the EME (3.32), we have 

atP(x,  t ) = D ~ 2 p ( x ,  t) +Ac3x[~ (x, t ) - r  t)] P(x,  t) 

+ �89 0~[-r t) + ~+(x, t)] P(x,  t) (4.22) 

where A = l i m l ~ o ( A / l ) .  This indicates that, properly speaking, the limit 
under consideration does not exist, because the stochastic drift term in 
(4.22) diverges. However, the equation (3.39) for P(x,  t) in the continuous 
limit can be obtained by taking the average of (4.22). The reason is that, 
following the same procedure as above, it is found that 

(x, t) P(x,  t) = ~ + (x, t) P(x,  t ) =  -2doP(x,  t) (4.23) 
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This means that when taking the average of (4.22) there is a cancellation 
of two divergent terms. In summary, for the model (2.22) the average over 
the noise realizations and the continuous limit are operations that do not 
commute in the sense that (4.22) contains divergent quantities. This exam- 
ple makes clear the advantages of the method followed in Section 3, that is, 
first make the average and then take the continuous limit. 

The main question addressed in this section is the correct interpreta- 
tion of ~(x, t) and its statistical properties. One is tempted to think that 
correlations like (~(x, t )~(x ' ,  t ' ) )  have to be proportional to 6 ( x - x ' ) .  
Even if this were so, stochastic partial differential equations like (4.6), (4.8), 
or (4.22) require some prescription to be interpreted, which is usually given 
in terms of a lattice system. CzT) In our case, the analysis of the discrete 
model leads to correlations proportional to 6x..~,. We recall, however, that 
we have defined the continuous limit of our models keeping the noise 
parameters (5 and 2 fixed. If we introduce a scaling A = 2 l -  1, O = col, (4.14) 
becomes 

((r tl). .-r t.)>> 

= A { g ? ~ } 6 ( t l - t 2 ) . . . 6 ( t z - t , ) 6 ( x ~ - x 2 ) - . . 6 ( X l - X , )  (4.24) 

The average of equations like (4.6) and (4.8) with ~(x, t) given by (4.24) 
leads to the occurrence of many divergent quantities. In particular, 
occurrence of 6(0) can be seen in ref. 7. With this scaling of the noise 
parameters, A = 2l z and f2 = col, and keeping the coupling constant c~ 
fixed taking l-~ 0, the continuous limit of the EME is just the diffusion 
equation (2.4), so that no effect of disorder remains in this limit. Since no 
divergence is found in this last procedure, we see another example of the 
noncommutation of the continuous limit and the averaging over disorder 
sources. We finally note that if the limit l ~  0 is taken, scaling the noise 
parameters as A = 2l-1, s = oS1, but also the coupling parameter ~ = A1-2 
as we have generally done, the EME for any of the models with local 
disorder has a well-defined continuous limit: 

O,P(x, t) = (D - A A ~ )  a~P(x, t) (4.25) 

A C K N O W L E D G M E N T S  

Financial support from the Direcci6n General de Investigaci6n Cien- 
tifica y T6cnica Projects No. PB-86-0534 and PB-87-0014 (Spain) is 
acknowledged. 



lO52 Hernbndez-Garcia e t  al. 

R E F E R E N C E S  

1. J. W. Haus and K. W. Kehr, Phys. Rep. 150:263 (1987). 
2. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach, Rev. Mod. Phys. 53:175 

(1981). 
3. G. S. Grest, I. Webman, S. A. Safran, and A. L. R. Bug, Phys. Rev. A 33:2842 (1986); 

A, L. R. Bug and Y. Gefen, Phys. Rev. A 35:1301 (1987); A. R. Kerstein and R. B. Pandey, 
Phys. Rev. A 35:3575 (1987). 

4. A. K. Harrison and R. Zwanzig, Phys. Rev. A 32:1072 (1985); L. Banyai, D. Wurtz, and 
H. Rost, Phys. Rev. B 35:5226 (1987). 

5. S. D. Druger, A. Nitzan, and M. A. Ratner, J. Chem. Phys. 79:3133 (1983); S. D. Druger, 
M. A. Ratner, and A. Nitzan, Phys. Rev. B 31:3939 (1985); S. D. Druger, in Transport and 
Relaxation in Random Materials, J. Klafter, R. J. Rubin, and M. F. Shlesinger, eds. (World 
Scientific, Singapore, 1986). 

6. N. Madras, Ann. Prob. 14:119 (1986). 
7. J. Heinrichs, Phys. Rev. Lett. 52:1261 (1984); 54:1457 (1985); S. Marianer and J.M. 

Deutsch, Phys. Rev. Lett. 54:1456 (1985); J. Heinrichs, J. Phys. C 17:L69 (I984). 
8. J. M. Sancho and M. San Miguel, J. Stat. Phys. 37:151 (1984). 
9. C. R. Doering, P. S. Hagan, and P. Rosenau, Phys. Rev. A 36:985 (1987). 

10. N. G. Van Kampen, Physica 102A:489 (1980); C. Van den Broeck, J. Stat. Phys. 31:467 
(1983). 

11. E. Hernfindez-Garcia, L. Pesquera, M.A. Rodriguez, and M. San Miguel, Phys. Rev. 
A 36:5774 (1987). 

12. M. A. Rodriguez, L. Pesquera, M. San Miguel, and J. M. Sancho, J. Stat. Phys. 40:669 
(1985). 

13. W. Lehr, J. Machta, and M. Nelkin, J. Star. Phys. 36:15 (1984); B. Derrida and 
R. Orbach, Phys. Rev. B 27:4694 (1983). 

14. P. J. H. Denteneer and M.H. Ernst, Phys. Rev. B29:1755 (1984); M.A. Rodriguez, 
E. Hern~mdez-Garcia, M. San Miguel, and L. Pesquera, preprint (1988). 

15. W. Feller, Introduction to Probability Theory' and its Applications (Wiley, New York, 
1957). 

16. J. Machta, M. H. Ernst, H. van Beijeren, and J. R. Dorfman, J. Stat. Phys. 35:413 (1984). 
17. C. R. Doering, Phys. Lett. A 122:133 (1987). 
18. H. Risken and H. D. Vollmer, Z. Phys. B 46:257 (1987). 


